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Abstract. We present a novel molecular dynamics simulation technique, which accounts for
both two- and three-body dispersion interactions. This technique is a unified approach of
molecular dynamics and quantum mechanical variational methods, in the spirit of the Car–
Parrinello method (1985Phys. Rev. Lett.55 2471). We use a highly simplified model for the
electronic structure of the atoms, which is, nevertheless, sufficient to correctly reproduce the
London two-body, and the Axilrod–Teller three-body dispersion forces in an appropriate limit.
The advantage of this new method is that it allows for a consistent treatment of both dispersion
damping and periodic boundary conditions at the pairand three-body levels.

1. Introduction

The accuraterepresentation of dispersion effects in computer simulation models presents
a number of difficulties. In classical simulations, with potentials expressed as functions of
internuclear separations, it necessitates the introduction of three-body terms. Gas-phase
studies of the pair dispersion potential reveal important short-range corrections to the
familiar asymptotic forms, such as theC6/R

6 dipole–dipole term, due to overlap of the
charge clouds, which lead to a ‘damping’ of the dispersion interaction [2]. They also show
important contributions due to higher-order (dipole–quadrupole etc) terms. At the three-
body level, although the asymptotic triple–dipole term is well known (the Axilrod–Teller
(A–T) potential [3]) the effect of damping is uncharacterized and the higher-order terms
are not easily represented. Furthermore, even the introduction of the A–T term presents
the technical problem of truncating the triple sum in condensed-phase calculations: this
appears to have precluded molecular dynamics (MD) studies. It is therefore difficult to
perform calculations in which the treatment of three-body effects is consistent with that of
dispersion at the pair level. This difficulty is not surmounted by recourse toab initio MD
methods [1]; at the present time, the available electronic density functionals do not include
dispersion correctly [4].

Interest in the three-body terms has been stimulated by recent accurate measurements
of the structure factor of atomic fluids [5]. More generally, it is often thought that other
(e.g. thermodynamic) manifestations of three-body effects are sufficiently well accounted
for by the use ofeffectivepair potentials. However, the state dependence of such potentials
[6] and their non-uniqueness are less frequently recognized [7]: for a given three-body
interaction a different effective pair potential is required to reproduce the internal energy
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and the pressure (and structure) at a single state point. The problem for simulation thus
arises when a pair dispersion term has been accurately characterized, by electronic structure
calculations or experiment on the dimer. At present, there is noconsistentway of introducing
its three-body counterpart into a bulk-phase calculation so as to retain a fully quantitative
description. The problem is pressing in modelling ionic systems [8] (inter alia), where
dispersion effects are, in absolute terms, quite large.

For these reasons we have been exploring simulation methods for a model system which
permits a fully self-consistent treatment of dispersion effects at the two- and three-body level,
alongside a conventional pair potential description of other interactions, such as short-range
repulsion. In this paper we will describe calculations which yield the asymptotic dipole–
dipole/triple-dipole terms only, but the method is straightforwardly generalized to deal with
all the difficulties raised above [9].

2. A simplified quantum mechanical model

Dispersion is a quantum mechanical effect and cannot be recaptured by the introduction of
additional classical dipoles, as with the induction effect [10]. For our purposes it is best
viewed as the reduction in the zero-point energy of the electrons in a collection of atoms due
to their mutual correlation. At large separations the electronic Hamiltonian of a collection
of identical atoms [11] is given by

Ĥ =
∑
i

Ĥi −
∑
i<j

µ̂µµi · TTT ij · µ̂µµj (1)

where the summation indices go over all atoms; in (1),Ĥi is the single-atom Hamiltonian of
atomi, µ̂µµi its dipole moment operator andT αβij a component of the dipole–dipole interaction
tensor [11] between atomsi andj . We exploit a highly simplified model for the electronic
structure of each atom, which is represented by asingle, distinguishable quantum particle.
This particle can only be in four possible states: a ground state (or ‘s’-type state,|s(i)〉)
which is completely symmetric, and three excited ‘p’ states (|px(i)〉, |py(i)〉, |pz(i)〉). This
is the minimum set of states which allow for transitions from the ground state, via thedipole
operator, to excited states. Simultaneous dipole transitions on different atoms give rise to
dispersion interactions. The difference in energy between the s and p states is denotedu1

(u1 = Ep − Es) and the dipole matrix elements are specified by a single parameterµ:

〈s(i)|µ̂µµi |pα(i)〉 = µeα. (2)

A standard perturbation calculation (atom in electrical field) yields that

µ2 = 1

2
α1u1 (3)

whereα1 is the polarizability of the atom. Treating the dipole–dipole interaction in (1) as
a perturbation, we get to third order in the perturbation expansion for the energy [11] ofN

atoms, by use of (2) and (3),

E = E0 +
∑
i<j

C6

R6
ij

+
∑
i<j<k

C9
(1 + 3 cosγi cosγj cosγk)

R3
ijR

3
ikR

3
jk

(4)

with

C6 = −3

4
α2

1u1 C9 = 9

16
α3

1u1. (5)

In equation (4), the first term,E0, is the energy of the non-interacting atoms (which in
the following we put to zero), the second term is the two-body London dispersion energy
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[12] and the last term is the three-body A–T potential [3], whereγi, γj and γk are the
interior angles of the triangle formed by the atomsi, j , and k. From equations (3) and
(5) it follows that we can determine the parametersµ andu1 of the model atom from the
physical parametersα1 and the pair dispersion coefficientC6 only. Note that the three-body
coefficientC9 is then determined as well, i.e. we have the relationshipC9 = 3

4α1C6, which
is known to be correct within a few per cent [13].

The classical forms (4) may be implemented directly in simulations (though the three-
body term may create practical difficulties with respect to defining cut-offs in periodic
boundary conditions). Our purpose is to introduce a method which will deal with more
complex interaction Hamiltonians than (1), and therefore deal with the difficulties mentioned
at the outset. To this end, we re-cast the above calculations in a variational form, in order
that we might exploit the Car–Parrinello (C–P) [1] methodology for adiabatic dynamics.

3. Variational approach

In the variational description, the total electronic ground state of the system will be
represented by a wavefunction|ψ〉 which is an expansion about the non-interacting ground
state over all possiblepairs of excited states:

|ψ〉 = |ψs〉 +
∑
i 6=j

∑
αβ

c
αβ

ij |ψαβ

ij 〉 (6)

where

ψs = s(1)s(2) · · · s(N) ψ
αβ

ij = s(1)s(2) · · · pα(i) · · · pβ(j) · · · s(N)

i.e. we use a limited (only doubly excited) configuration interaction scheme (DCI). If the
Hamiltonian of the system is given by (1), we can evaluate the energy:

EDCI({c}, {R}) = 〈ψ |Ĥ |ψ〉
〈ψ |ψ〉 =

∑
ij

eij

n
+

∑
ijk

eijk

n
(7)

with

eij =
∑
αβ

[
4u1(c

αβ

ij )
2 − 2µ2T

αβ

ij c
αβ

ij

]
(8)

eijk = −4µ2
∑
αβγ

T
αβ

ij c
αγ

ik c
βγ

jk (9)

and wheren is the normalization factor (n = 1 + 2
∑

αβij (c
αβ

ij )
2). The first term ineij ,

equation (8), is the energy required to excite both atomsi and j , in the absence of any
interaction. The second term is the corresponding gain in energy because of the dipole–
dipole interaction present between the atoms. Note that the sum of these two contributions
will always have a minimum forcαβij 6= 0, i.e. there is an attractive pair interaction energy
for all distances. There is however a three-body termeijk, equation (9), present as well,
which follows from correlated excited states inboth the bra and ket of the〈ψ |Ĥ |ψ〉 term.

The ground-state energy is the minimum of (7) with respect to the coefficients. At the
pair level (omittingeijk), this can be calculated exactly, giving

minEDCI({c}, {R}) = u1 − u1

√
1 + (6µ4/u2

1)
∑
i<j

R−6
ij . (10)

Expanding the square root would seem to give, to lowest order in the distance, the
perturbation expression (4) and (5) for the pair dispersion interaction; however, this would
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only be correct for a system oftwo atoms; for a system ofN atoms, it is obvious that
the energy (10) would scale like

√
N instead ofN , in other words, the energy is size

inconsistent. This is a well-known feature of truncated configuration interaction methods of
many-particle systems [14]. In principle, for anN -atom system the wavefunction should
contain up toN correlated excitations in order to get a size-consistent energy.

This problem is circumvented by using the ‘coupled-pair approximation’ (CPA),
introduced into electronic structure theory by Ahlrichs and Scharf [15] in order to achieve
a size-consistent variational DCI calculation. In our context, this consists of replacing the
normalization factorn in (7) by apartial normalization factornij :

ECPA({c}, {R}) =
∑
ij

eij

nij
+

∑
ijk

eijk

(niknjk)1/2
. (11)

The best choice for the factornij depends on the problem at hand. We follow the suggestion
given by Ahlrichs and Scharf [15], which translates for our model to

nij = 1 +
∑
αβ

∑
l

((c
αβ

il )
2 + (c

αβ

lj )
2).

The result is a variational function (11) which at its minimum achieves a size-consistent
value, which is close to that obtained from the the perturbation expression (4) for our
problem, as we will demonstrate next.

Table 1. The ratio of the variational energyEvar to the perturbation energyEper, at the two-body
level. In the second columnEvar is given as the minimum of the truncated CI expression (7);
in the third columnEvar is the minimum of expression (11);Eper is given by equation (4). The
system studied was argon at a reduced density of about 0.75.

Evar/Eper
Number
of atoms DCI (7) CPA (11)

2 0.999 0.999 99
8 0.995 0.999 54

27 0.977 0.999 22
64 0.942 0.999 07

125 0.890 0.998 98
216 0.827 0.998 92
343 0.736 0.998 87
512 0.671 0.998 84

The functional (11) has the useful property for testing that theeijk-term contains all
the three-body effects; we therefore first examine the energies obtained from the simplified
functional with this term omitted and compare the results with the standard perturbation
energies for pair dispersion only(

∑
i<j C6R

−6
ij ). The results are shown in table 1 for

various system sizes. It is clearly demonstrated that, at the pair level, the expression for the
energy in the CPA (11) is size-consistent and its minimum very close to the perturbation
theory result; this is in contrast to (7).

We next consider the energy of a triplet of atoms (figure 1). The total energy of the
triplet (from equation (11)) less the pair dispersion energy of all pairs should agree with
the A–T energy if the functional gives results in agreement with perturbation theory. The
figure shows excellent agreement with regard to both the functional form and magnitude of
the A–T term. Calculations on larger clusters indicate that the total three-body energy is
size consistent and agrees to at least 95% of the A–T energy for system of up to 125 atoms.
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Figure 1. The three-body energy of an interacting triplet, obtained from the minimum of the
CPA functional (11) (points), compared with the Axilrod–Teller energy (line) as the internal
angleθ is varied to pass from the equilateral triangle to the linear geometry. The distance of
the particles in the triangle was set to 1.2σ .

4. Ab initio molecular dynamics and results

We may now devise an MD simulation method in which the expansion coefficients in the
wavefunction (6) are treated as additional degrees of freedom in the Car–Parrinello sense
[16]. Equations of motion for the expansion coefficients are derived from the Lagrangian
formulation of classical mechanics, with the electronic energy (11) playing the role of
a potential. To perform molecular dynamics the coefficient equations of motion may be
combined with equations of motion for the atomic positions and integrated simultaneously
in time with the coefficients maintained at the adiabatic values, as in the standard C–P
method [16]. This proved straightforward to implement; full details will be given elsewhere
[9]. We describe results from a simulation with 125 argon atoms, using periodic boundary
conditions. The repulsive part of interaction is modelled by a classical 4εσ 12/R12 potential
and theC6-coefficient, which determines that the electronic parameters in the model atom,
is set to−4εσ 6, whereε andσ are the familiar Lennard-Jones parameters. The system is
held at a constant temperature (100 K) by applying a thermostat; the particle density was
set to 0.70 in reduced units. We used a time-step of about 1.2 fs, which is about six times
smaller than what would be normally used in a classical MD simulation. The run lasted
10 ps.

To demonstrate consistency with previously established fluid properties with the normal
two- and three-body perturbation theory potentials we make contact with theoretical results
obtained by Attard [17] for the three-body contribution to the effective pair interaction
energy, denotedueff(R). This is obtained in the simulation by considering a pair of atomsi

andj at separationR and averaging
∑

k 6=i,j eijk δ(Rij −R) over the course of the simulation
run. This averaging can be done conveniently because the geometry ineijk only appears
at thepair level (i.e. viaTij ). Theory [18] shows that at large separations the three-body
contribution to the effective pair potential goes as(8/9)πρC9R

−6; in figure 2, we plot
ueff(R)/(C6R

−6) and compare with the same quantity extracted from the figure in Attard’s
paper (atρ∗ = 0.7, T = 100 K) [17]. Note that the three-body contribution to the effective
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Figure 2. The effective pair potentialueff reduced from the three-body A–T potential. The
solid line is the result obtained in a full three-body simulation, and is compared with Attard’s
theoretical result [17] and the theoretical largeR-limit (dashed). For argon atρ∗ = 0.7,
T = 100 K.

pair interactions is of the order of 6% of the true (C6R
−6) pair potential for argon at this

density. The close correspondence between the values ofueff obtained in this work, and
Attard’s result, and the limiting value leave no room for doubt that three-body interactions
in our simulation are reproducing A–T behaviour very closely.

We finally note that one of the assets of the present simulation model is that the three-
body energy term (9) contains the geometry of the atoms only at thepair level. This
implies that that the three-body energy can be treated with respect to periodic boundaries
and dispersion damping, consistent with the pair interactions. This feature opens the way
for a quantitative study of three-body dispersion effects in bulk systems.
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